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ABSTRACT

A new algorithm based on the Method of Lines
for computation of eigenmodes in waveguides
for microwave and millimeter frequencies is pro-
posed and substantiated. The algorithm uses
discretization lines in different directions and in
some regions of the guide cross-section in two
perpendicular directions. This enables a pre-
cise computation of the fields and propagation
parameters. The algorithm allows analysis of
complex waveguide structures.

INTRODUCTION

Modern integrated circuits for microwave and
millimeter frequencies consist of a number of
composite layers with embedded metallic strips.
The trend toward miniatuarization results in
closer positioning of all elements. Usually the
dimensions of the waveguide cross-sections are
small compared with the length of sections in
the circuits. To describe the circuit behavior
correctly it 1s necessary to precisely determine
the eigenmodes and especially the propagation
constant. Fig. 1 gives an example of a com-
plex waveguide cross section. Such a waveguide
structure is important, e.g. for Lange-couplers
in millimeter wave technology. In this case
the metallic strips may have equal dimensions.
Generally the dimensions in the cross-section
are different. The slot widths between the strips
and their heights may be small compared with
the widths of the metallic strips and the thick-
ness of the layers. To analyze such waveg-
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Fig. 2: Part of cross-section in Fig. 1 with details
of the discretization

uide structures precisely, the modeling algo-
rithm must take these facts into account. Hence
in this contribution an adequate new proce-
dure is described based on the Method of Lines
(MoL). In the Mol. we discretize the field not
completely but only as long as necessary. In the
remaining direction the field dependence is cal-
culated analytically. In Fig. 2 it is shown how
the new discretization should be performed in
the given example of the structure. We have
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some regions which are bounded by metalliza-
tions on two sides. In these regions we use
discretization lines parallel to the metallization
surface. In the regions H;(i = 1,2,3,4) we have
horizontal and in region Vj vertical discretiza-
tion lines. The regions €y and (5 connect the
regions with horizontal and vertical discretiza-
tion lines. Therefore, in these regions the lines
from the neighboring regions should have a con-
tinuation. This in turn means the use of crossed
lines in regions C; and (5. The numbers of dis-
cretization lines in horizontal and vertical di-
rections can be chosen separately. Therefore,
the number of lines, e.g. between the strips,
should be chosen large enough to obtain a high
accuracy without increasing the numerical ef-
fort appreciably. In the regions with unidirec-

tional discretization lines the field description is
achived as in [1][2].

GENERAL PORT RELATION

The field description in the region with crossed
lines can be achieved in the following way: The
field outside R can be uniquely determined if
the tangential fields are known at the surface
of R (uniqueness theorem), that means at the
ports A, B, C and D. In view of linearity of
all materials and the Maxwell equations, the
following relation in matrix form between the
tangential fields at the ports A, B, C and D of
the general region R holds

Hy Yaa YAD EA
-Hg | : : Eg

He = : : E. (1)
—Hp YDA YoD Ep

Ey and Hy (U = A, B, C, D) are supervectors
of the discretized tangential fields at port U.
Each supervector consists of two vectors for the
two tangential components. In more compact
form we can write
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Fig. 3: Field calculation in a region R using crossed
lines:
a) general region R with definitions
b) ports C and D short-circuited: analysis
using vertical lines
c) ports A and B short-circuited: analysis
using horizontal lines
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Hus = [Hy, -H;]" Eap = [E}, E)'

Hep = [HY, —HY]" Ecp = [EL EL)

The admittance matrices can be calculated in
the following way: By short-circuiting the ports
C and D (using metallic walls) we obtain mag-
netic field parts at the ports A and B and even
at ports C and D from the electric field Exp.
All these field parts are determined using ver-
tical discretization lines parallel to the metallic
side walls. From these partial fields the matri-
ces yaD and y&E are obtained. Similarly short-
circuiting ports A and B and using horizon-
tal discretization lines we obtain the matrices
y$& and ySh. TFor the regions with unidirec-
tional discretization lines analogous equations
as above can be written [1].
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ADMITTANCE MATRICES

In this subsection some details for the determi-
nation of the matrices in eq. (2) will be given.

As example we describe the determination of
. ~AB —~AB .
the supermatrices y,5 and yop in transform

domain. For this purpose the ports C and D are
short circuited. The discretization lines have
vertical direction (the parameters are therefore
marked by v or V). We adapt the formulas given
in [1]. The supervectors in transform domain
for this field part are defined by

Wl el

where the H-components are normalized with

free space wave impedance 1y = +/po/co. We

assume wave propagation in y direction accord-
ing to exp (—j\/@y), where § = koy and kg is
the free space wave number. Using the follow-
ing abbreviations [1]

ey st
%h 5IV—X2 ] (5)

A =

ev

8. = /b, (6)
ry) (7)
)
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TZ;LDBJLDBJL TZh =X, €a=¢6 —&c (8

the field transfer equations between planes A
and B are given by

Hyl 2 {ZY @} Bl
T, Y: Yi]| E,
————

with

v o~ o~

—~ o~ —1
= FA, F = <thanh(deZ)> o)

a, = (T, sinh(T'.d -
o= (Posinn(P\d.))

where ¢, is the relative permittivity and d, =
kod. is the dimension of the region R in z direc-
tion. IY, are identity matrices. Dy, (D.) is the

first order difference operator for the field com-
ponent H,(E,) for the line in vertical direction
which has to fulfill Neumann (Dirichlet) bound-
ary conditions. Because of the electric walls we
do not get a tangential electric field at planes
C and D. The tangential magnetic field there
will be explained by the magnetic field vectors
ﬁzA,B and ﬁZAB. The field at an arbitrary =

(Z_- = d. — %) is described by

(3 sinh(Fv‘;E_)ﬁv sinh(I'y %) i
7)) = — "7 S\ ws
“ sinh(I'Vd,) uA sinh(I'Yd,) uB

(1)
u =y (u = z) corresponds to w = h (w = e).
In this case the eq. (11) must be discretized for
z values at the full (dashed) lines in horizontal
direction. The field transfer from planes A/B
to planes C/D can be described by the following
equations

—vV s
[ ggc] _ [vm

=5 —v
Y VCB] |: %%A:| (12)
Vba -

=S
Vs uB

where S = D (on horizontal discretization lines
with Dirichlet boundary conditions) if u = 2
and S = N (on horizontal discretization lines
with Neumann boundary conditions) if u = y
and e.g.

—S —S _
VCB = TiHABT;:r VDB = TZUHABTR (13)

(A);, = sinh (I %) /sinh (Twed.)  (14)

The diagonal matrix Ty obtained by

TE = diag <\/sz[1/\/§,i1, 1,41, ]) (15)

is necessary to obtain the original field values at
ports C (positive signs) and D (negative signs).
To obtain the quantities in transform domain
for the horizontal lines a multiplication by T 4
is necessary. In case of u = y the magnetic field
components on the right side of eq. (12) will be

substituted by the electric field E,p using the
eq. (9). In case of u = z the field vectors ﬁ:A,B
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as Tunctions of EZA,B have to be calculated with
the help of eqs. (2.7) of [1] resulting in

-V v —t] &V
HZA,B: —vere Iy 4, EA,B (16)

Combining all these equations the supermatrix
—AB . .
Yop can be formed. The remaining matrices
=~0D =~0D . L

Ycop and ¥ 45 can be determined in similar way.

The whole analysis can now be performed as
an impedance/admittance matching process [2].
The impedance/admittance matching between
the regions C; and Hy (note that the regions
have different heights) is e.g. given by [2]

Zo = T611CTH27H2 Tﬁgl Toie (17)
where Tcicnz are transformation matrices

known in the Mol. algorithm. T¢;. is reduced
according to the common part of the ports.

NUMERICAL RESULTS

The proposed algorithm is verified by compar-
ing with other numerical methods, demonstrat-
ing precise resolution of the fields and propa-
gation constants of the modes under considera-
tion. It has been applied successfully to a vari-
ety of open and shielded dielectric waveguides,
including the insulated image guide, which pro-
vides the most useful canonical configuration
for modeling open dielectric waveguiding ge-
ometries used in millimeter through optical fre-
quency ranges. The diagram in Fig. 4 shows the
cutoff wavelength of a groove guide as function
of the plate distance. For comparison the re-
sults of M. Sachidananda [6] obtained by mode
matching technique (MMT) are included. Also
measured results obtained by T. Nakahara and
N. Kurauchi and taken form [6] are incorpo-
rated. The discretization scheme used for the
calculations in this work is shown as insert in
the Fig. 4. Only a quarter of the structure was
used for the analysis.
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Fig. 4: Variation of the cut-off wavelength A\, with
varying plate distance of a groove guide.
full line: MoL, e @ @ MMT [6], 0 experiment
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