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ABSTRACT

A new algorithm based on the Method of Lines
for computation of eigenmodes in waveguides
for microwave and millimeter frequencies is pro-
posed and substantiated. The algorithm uses
discretization lines in di�erent directions and in
some regions of the guide cross-section in two
perpendicular directions. This enables a pre-
cise computation of the �elds and propagation
parameters. The algorithm allows analysis of
complex waveguide structures.

INTRODUCTION

Modern integrated circuits for microwave and
millimeter frequencies consist of a number of
composite layers with embeddedmetallic strips.
The trend toward miniatuarization results in
closer positioning of all elements. Usually the
dimensions of the waveguide cross-sections are
small compared with the length of sections in
the circuits. To describe the circuit behavior
correctly it is necessary to precisely determine
the eigenmodes and especially the propagation
constant. Fig. 1 gives an example of a com-
plex waveguide cross section. Such a waveguide
structure is important, e.g. for Lange-couplers
in millimeter wave technology. In this case
the metallic strips may have equal dimensions.
Generally the dimensions in the cross-section
are di�erent. The slot widths between the strips
and their heights may be small compared with
the widths of the metallic strips and the thick-
ness of the layers. To analyze such waveg-
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Fig. 1: Cross-section of a millimeter-wave circuit
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Fig. 2: Part of cross-section in Fig. 1 with details

of the discretization

uide structures precisely, the modeling algo-
rithmmust take these facts into account. Hence
in this contribution an adequate new proce-
dure is described based on the Method of Lines
(MoL). In the MoL we discretize the �eld not
completely but only as long as necessary. In the
remaining direction the �eld dependence is cal-
culated analytically. In Fig. 2 it is shown how
the new discretization should be performed in
the given example of the structure. We have
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some regions which are bounded by metalliza-
tions on two sides. In these regions we use
discretization lines parallel to the metallization
surface. In the regions Hi(i = 1; 2; 3; 4) we have
horizontal and in region V1 vertical discretiza-
tion lines. The regions C1 and C2 connect the
regions with horizontal and vertical discretiza-
tion lines. Therefore, in these regions the lines
from the neighboring regions should have a con-
tinuation. This in turn means the use of crossed
lines in regions C1 and C2. The numbers of dis-
cretization lines in horizontal and vertical di-
rections can be chosen separately. Therefore,
the number of lines, e.g. between the strips,
should be chosen large enough to obtain a high
accuracy without increasing the numerical ef-
fort appreciably. In the regions with unidirec-
tional discretization lines the �eld description is
achived as in [1][2].

GENERAL PORT RELATION

The �eld description in the region with crossed
lines can be achieved in the following way: The
�eld outside R can be uniquely determined if
the tangential �elds are known at the surface
of R (uniqueness theorem), that means at the
ports A, B, C and D. In view of linearity of
all materials and the Maxwell equations, the
following relation in matrix form between the
tangential �elds at the ports A, B, C and D of
the general region R holds
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EU and HU (U = A, B, C, D) are supervectors
of the discretized tangential �elds at port U.
Each supervector consists of two vectors for the
two tangential components. In more compact
form we can write2
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Fig. 3: Field calculation in a region R using crossed

lines:

a) general region R with de�nitions

b) ports C and D short-circuited: analysis

using vertical lines

c) ports A and B short-circuited: analysis

using horizontal lines
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The admittance matrices can be calculated in
the following way: By short-circuiting the ports
C and D (using metallic walls) we obtain mag-
netic �eld parts at the ports A and B and even
at ports C and D from the electric �eld EAB.
All these �eld parts are determined using ver-
tical discretization lines parallel to the metallic
side walls. From these partial �elds the matri-
ces yABAB and yABCD are obtained. Similarly short-
circuiting ports A and B and using horizon-
tal discretization lines we obtain the matrices
yCDAB and yCDCD . For the regions with unidirec-
tional discretization lines analogous equations
as above can be written [1].
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ADMITTANCE MATRICES

In this subsection some details for the determi-
nation of the matrices in eq. (2) will be given.
As example we describe the determination of

the supermatrices byABAB and byABCD in transform
domain. For this purpose the ports C and D are
short circuited. The discretization lines have
vertical direction (the parameters are therefore
marked by v or V).We adapt the formulas given
in [1]. The supervectors in transform domain
for this �eld part are de�ned by
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where the H-components are normalized with
free space wave impedance �0 =

p
�0="0. We

assume wave propagation in y direction accord-
ing to exp

��jp"rey
�
, where y = k0y and k0 is

the free space wave number. Using the follow-
ing abbreviations [1]
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with

yv1 = b
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v = �b�v tanh(b�vdz)��1
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where "r is the relative permittivity and dz =
k0dz is the dimension of the region R in z direc-
tion. Ive;h are identity matrices. Dh (De) is the

�rst order di�erence operator for the �eld com-
ponent Hy(Ey) for the line in vertical direction
which has to ful�ll Neumann (Dirichlet) bound-
ary conditions. Because of the electric walls we
do not get a tangential electric �eld at planes
C and D. The tangential magnetic �eld there
will be explained by the magnetic �eld vectors
H

v

yA;B and H
v

zA;B. The �eld at an arbitrary z

(z� = dz � z) is described by
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u � y (u � z) corresponds to w � h (w � e).
In this case the eq. (11) must be discretized for
z values at the full (dashed) lines in horizontal
direction. The �eld transfer from planes A/B
to planes C/D can be described by the following
equations
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where S � D (on horizontal discretization lines
with Dirichlet boundary conditions) if u � z
and S � N (on horizontal discretization lines
with Neumann boundary conditions) if u � y
and e.g.
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The diagonal matrix TR obtained by
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is necessary to obtain the original �eld values at
ports C (positive signs) and D (negative signs).
To obtain the quantities in transform domain
for the horizontal lines a multiplication by Tt

wH

is necessary. In case of u � y the magnetic �eld
components on the right side of eq. (12) will be

substituted by the electric �eld b
E

v

AB using the

eq. (9). In case of u � z the �eld vectors H
v

zA;B
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as functions of Ev
zA;B have to be calculated with

the help of eqs. (2.7) of [1] resulting in
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Combining all these equations the supermatrixbyABCD can be formed. The remaining matricesbyCDCD and byCDAB can be determined in similar way.
The whole analysis can now be performed as
an impedance/admittancematching process [2].
The impedance/admittance matching between
the regions C1 and H2 (note that the regions
have di�erent heights) is e.g. given by [2]

ZC1 = bT�1
C1c

bTH2ZH2
bT�1
H2
bTC1c (17)

where TC1c;H2 are transformation matrices
known in the MoL algorithm. TC1c is reduced
according to the common part of the ports.

NUMERICAL RESULTS

The proposed algorithm is veri�ed by compar-
ing with other numerical methods, demonstrat-
ing precise resolution of the �elds and propa-
gation constants of the modes under considera-
tion. It has been applied successfully to a vari-
ety of open and shielded dielectric waveguides,
including the insulated image guide, which pro-
vides the most useful canonical con�guration
for modeling open dielectric waveguiding ge-
ometries used in millimeter through optical fre-
quency ranges. The diagram in Fig. 4 shows the
cuto� wavelength of a groove guide as function
of the plate distance. For comparison the re-
sults of M. Sachidananda [6] obtained by mode
matching technique (MMT) are included. Also
measured results obtained by T. Nakahara and
N. Kurauchi and taken form [6] are incorpo-
rated. The discretization scheme used for the
calculations in this work is shown as insert in
the Fig. 4. Only a quarter of the structure was
used for the analysis.
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Fig. 4: Variation of the cut-o� wavelength �c with

varying plate distance of a groove guide.
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